

TEC Controller DX5100 Technical Manual

SYSTEM OF COMMANDS

Moscow, 2017 Version 3.13 PL Engineering Ltd Controller DX5100 / System of Commands

Edition July 2017

Copyright

All rights reserved.

Reproduction in any manner, in whole or in part is straightly prohibited without written permission of PL Engineering Ltd.

The information contained in this document is the subject to change without notice.

CONTENTS

1. COM	JUNICATION PROTOCOL	7
	terfaces RS-485 and RS-232	7
1.2. Pi	otocol WAKE	8
1.3. St	ructure of Buffer of Data Transfer/Reception	12
1.3.1.	WAKE Binary Mode	13
1.3.2.	WAKE Symbol mode	14
1.3.3.	Connection	15
2. SYST	EM OF COMMANDS	19
1.4. C	ommands Performance	19
1.5. D	evice Status	20
1.6. Ta	able of Commands	21
1.7. C	ommands Descriptions	24
1.7.1.	Send Echo	24
	Send Device Identifier	24
	Send Device Firmware Version	25
1.7.4.	Send Information of Device	25
	Write Information into Device	26
	Set Network Device Address	26
	Set Telemetry Status	26
1.7.8.		29
	Write Parameters Stored in FLASH	30
	 I2C Bus Operations 	31
	. Management of Program in Time	31
	2. Send Telemetry Line	33
	8. Criterion of Signal of Settling	34
	4. Status of Devices in System	34
	5. Setting Command Status to Interface	35
	Digital Output Enable	36
	Control of Digital Input	36
	ommands of Work with ADC	37
-	ADC Hardware Calibration	38
	ADC Calibration	38
1.8.3.	Writing Calibration ADC Coefficients	39
ver. 3.13 (2017) pag	e 3 of 64

1.8.4.	Writing ADC Filter Coefficient	39
1.8.5.	Sending ADC coefficients	40
1.8.6.	Sending Registers of ADC Channel Offset	40
1.8.7.	Starting Measurement in ADC Channel	41
1.8.8.	ADC One Channel Measurement	41
1.8.9.	Mask on ADC Channels	42
1.8.10.	PGA of ADC thermistor channel	43
1.8.11.	Thermistor coefficients	43
1.8.12.	Save the Current Settings of Thermistor Input	46
1.8.13.	Restore Thermistor Input Settings	46
1.8.14.	Save Table of Settings (Backup)	47
1.8.15.	Restore Table of Settings (Backup)	47
1.9. Cor	mmands of Work with DAC	48
1.9.1.	Setting DACs in Volts	49
1.9.2.	Setting DACs Directly	49
1.9.3.	Writing DAC Calibration Coefficients	50
1.9.4.	Sending Coefficient and DAC Maximal Values	50
1.9.5.	Writing Maximal Allowable Voltage	51
1.9.6.	Voltage of T-reg	51
1.10. Cor	mmands of Work with PID	52
1.10.1.	Setting of TEC Polarity	52
1.10.2.	Writing Parameters of PID Controller	52
1.10.3.	Sending Parameters of PID Controller	52
1.10.4.	Set thermistor current	53
1.10.5.	Sending/Set Setpoints of PID Controller	54
1.10.6.	Starting Controller	54
1.10.7.	Parameters of Output of PID Controller	55
1.10.8.	Starting Z-meter	56
1.10.9.	Storage of Z-Metering Parameters	57
1.10.10	2. Z-Meter Current	57
1.10.11	. Switching On Regulation after Restarting	58
1.10.12	 Writing Limiting Temperatures 	59
1.10.13	Sending Limiting Temperatures	59
1.10.14	 Sending Z-metering Results 	60

page 4 of 64

Controller DX5100 / System of Commands	PL Engineering Ltd.
--	---------------------

1.10.15.	Sending Z-metering Parameters	60
1.10.16.	Autotuning PID	61
1.10.17.	Reset of controller	62
1.10.18.	Management of indication board	62

page 5 of 64

Controller DX5100 / System of Commands

page 6 of 64

1. **COMMUNICATION PROTOCOL**

1.1. Interfaces RS-485 and RS-232

In the controller two physical interfaces RS-485 and RS-232 are realized.

Both interfaces are serial and use the following adjustments:

	9600
	19200(default)
Possible rates of exchange (baud)	38400
	57600
	115200
databits	8
parity	no
Stop bits	1
flow control	no

The program exchange protocol is «WAKE».

One of the interfaces is used for management of control of the TEC controller (sending of commands and reception of responses). I.e. the protocol WAKE can function by either of the interfaces. For definiteness, we shall name the interface on which the WAKE - as the command interface.

The protocol WAKE suggests a half-duplex exchange. It does not give enable the device to output information on its own initiative via the command interface. For this purpose (outputting of the telemetry on the initiative of the device) the other interface (where WAKE does not work) is used.

Thus, each of the interfaces realized in the Controller can be command.

The non-command interface is used for telemetry output. Telemetry is outputted in a symbolic form. Hence for display and storage of the

ver. 3.13 (2017)

page 7 of 64

information transmitted by the device it is possible to use any terminal program properly adjusted.

The interface RS-485 supports the network topology that allows connecting up to 32 devices to one bus RS-485. The physical environment of signaling in the bus RS-485 is a twisted pair. The physical realization of the protocol RS-485 suggests a half-duplex mode of bus exchange.

The device is always a slave. It sends a response to every frame received.

The package WAKE received by slaves is further named -«command».

The response frame is named «informational».

1.2. **Protocol WAKE**

The protocol WAKE is a logic level of the control interface with the help of the asynchronous serial channel. The physical level of the interface is not defined by the protocol, e.g. either RS-232 or RS-485 can be used. The report allows exchanging data frames, length up to 255 bytes, with addressed devices, which can be up to 127. In the Controller the total length of a frame is limited by 64 bytes.

The base of the protocol WAKE is the protocol SLIP (UNIX[™] Serial Link Interface Protocol).

Data transmission is carried out in a binary form, i.e. all possible byte values are used (00h...FFh).

For transfer of service information two codes are reserved: FEND = C0h (Frame End) and FESC = DBh (Frame Escape).

The control code FEND serves for a designation of the sending start, and the code FESC serves for the transmission of ESC-sequences.

If in a data stream there bytes whose values coincide with control codes, these bytes are replaced by ESC-sequences. This mechanism is named byte stuffing.

The code FEND is replace by the sequence <FESC>, <TFEND>, and the code FESC - by the sequence <FESC>, <TFESC>, where TFEND = DCh (Transposed FEND), TFESC = DDh (Transposed

FESC). The codes TFEND and TFESC are control only in the ESCsequences, as at data transmission they need not be replaced.

Table 1. Protocol WAKE control codes

Designation	Explanation	HEX-value
FEND	Frame End	C0h
FESC	Frame Escape	DBh
TFEND	Transposed Frame End	DCh
TFESC	Transposed Frame Escape	DDh

Table 2. Substitution of databytes by ESC-sequences

Databyte	Sequence transmitted
C0h	DBh, DCh
DBh	DBh, DDh

The structure of the packet WAKE is the following: it always begins with the control code FEND (C0h). Then an optional address byte follows after which there is a command byte. The byte of data amount and actually databytes go farther. The optional byte of the control sum terminates the packet, CRC-8.

Table 3. Packet WAKE structure

FEND ADDR CMD N Data1 . . . DataN CRC

FEND: The control code FEND (C0h) is an attribute of the beginning of a packet. Due to the stuffing, this code does not exist anywhere else in a stream, which unequivocally allows determining the beginning of a packet.

<ADDR>: The address bytes are used for addressing separate devices. To be able to determine unequivocally whether the second and the third bytes in a packet are an address or a command, there

are some restrictions. For addressing byte 7 is used, and the MSB transmitted together with the address should be always set =1.

	D7	D6	D5	D4	D3	D2	D1	D0
ADDR =	1	A6	A5	A4	A3	A2	A1	A0

Sometimes there is a necessity to send a command or data simultaneously to all the devices. For this purpose the broadcast is carried out by transfer of the zero address (taking into account MSB=1 the transmitted byte is equal 80h).

The transfer of the zero address in a packet is completely similar to transfer of a package without an address. Therefore for the protocol realization it is possible to exclude the zero address from a packet automatically.

Taking into account the word length and one address reserved for a broadcast, the maximum number of addressed one-type devices equals 127.

If it is a necessary to send the value of address 40h or 5Bh (transmitted bytes in this case will be equal C0h or DBh), the stuffing is done, i.e. the transmission of the ESC-sequence (see table 2).

The devices with such addresses demand one byte longer packet. It can be considerable when short packets are used. In such cases it is necessary to avoid assignment to devices of the named addresses.

CMD: The command byte should always have a zero MSB.

	D7	D6	D5	D4	D3	D2	D1	D0
CMD =	0	C6	C5	C4	C3	C2	C1	C0

The command code occupies 7 bits, which allows transmitting up to 128 various commands.

The codes of commands are chosen in an arbitrary way depending on requirements.

```
page 10 of 64
```

As the command code has always a zero MSB, this code never coincides with control codes. When sending a command the stuffing it is never done.

N: The byte of data amount has a value equal to the number of transmitted databytes.

The code of amount of data occupies 8 bits, so one packet can contain up to 255 databytes. The value N does not take into account packet service bytes FEND, ADDR, CMD, N and CRC. As a result of the stuffing the packet actual length can increase. The value N does not take into account this fact and expresses the number of useful databytes (i.e. the value N is always such as though there were no stuffing).

If the transmitted command has no parameters, N = 00h and databytes are omitted.

If it is necessary to transfer the value N equal C0h or DBh the stuffing is done, i.e. the transfer of the ESC-sequence (see Table 2). However at such big values N the packet length is so great, that its lengthening by a byte is practically imperceptible.

Data1...DataN: Databytes whose number is determined by the value N. At N = 00h there are no databytes. The databytes can have any value except FEND (C0h) and FESC (DBh). If it is necessary to transfer one of these values the stuffing is done, i.e. the transfer of the ESC-sequence (see Table 2), consisting of the control code FESC and code TFEND (TFESC).

The command parameters are sent in the data field of the command frame of the Controller.

The information frame data field contains a response answer generated by the device.

In the Controller the databytes represent the ASCII symbols. Thus all the field of the data can be considered as a symbolic line.

CRC: Byte of the control sum CRC-8. It can be absent in some options of the protocol. The control sum CRC-8 is calculated before the stuffing for the entire packet, beginning with the byte FEND and finishing with the last databyte. If a packet transmits an address, when calculating the control sum, its true value is used, i.e. MSB=1 is not taken into account.

For the calculation of the control sum the polynomial is used. CRC = X8 + X5 + X4 + 1.

Before the calculation the number DEh initializes the value CRC. By transfer of the value of the control sum byte, C0h and DBh are replaced with ESC-sequences (see Table 2).

1.3. Structure of Buffer of Data Transfer/Reception

The structure of the data field of the frame (Data1 ... DataN) of the realized protocol for all the commands has the same features.

Each command (command frame) causes a response (information frame).

In each **command frame** there are two (first) bytes that stand for the following.

The first byte is the identifier of the device type and is an expansion of the addressing field. The device on the bus perceives the command frame as directed to it, if the address byte and identifier coincide with those of the device.

By broadcasting transfer the identifier, as well as the address, is accepted equal to zero. The described device has an identifier of the type 2.

The second byte is reserved for further applications and is not used in the Controller.

In each **information frame** there are two (last) bytes that stand for the device status. The status bytes should be interpreted as a set of bits, each of which signals about an event. The correspondence of status bits to the events will be given below.

As an example of parameters, the data field can contain the following types of data.

Data Types	Bits	Bytes	Value Range
unsigned char	8	1	0 — 255
unsigned int	16	2	0 — 65535

page 12 of 64

Data Types	Bits	Bytes	Value Range
unsigned long	32	4	0 — 4294967295
float	32	4	±1.175494E-38 — ±3.402823E+38

In this system of commands no sign integers are used, though they may be used in a general case.

Besides the types given in the Table the data field can contain a symbol line finished by zero (0x00).

Two kinds of data fields are supported: symbolic and binary (corresponding modes of WAKE).

1.3.1. WAKE Binary Mode

The integer types of data are given by the sequence of bytes of the number shown in the Table below. The upper bytes are given first.

The number 7459 is stored as a hexadecimal value of 0x1D23. In memory, this value appears as follows:

		Address+0	Address+1	Address+2	Address+3
Contents	int	0x1D	0x23	-	-
Contents	long	0x00	0x00	0x1D	0x23

A floating-point number is expressed as the product of two parts: the mantissa and a power of two. For example:

\pm mantissa $\times 2^{exponent}$

The mantissa represents the actual binary digits of the floating-point number.

The power of two is represented by the exponent. The stored form of the exponent is an 8-bit value from 0 to 255. The actual value of the exponent is calculated by subtracting 127 from the stored value (0 to 255) giving a range of -127 to +128.

The mantissa is a 24-bit value (representing about seven decimal digits) whose most significant bit (MSB) is always 1 and is, therefore, not stored. There is also a sign bit that indicates whether the floating-point number is positive or negative.

Floating-point numbers are stored on byte boundaries in the following format:

	Address+0	Address+1	Address+2	Address+3
Contents	SEEE EEEE	EMMM MMMM	MMMM MMMM	MMMM MMMM

where

S represents the sign bit where 1 is negative and 0 is positive.

E is the exponent with an offset of 127.

M is the 24-bit mantissa (stored in 23 bits).

Zero is a special value denoted with an exponent field of 0 and a mantissa of 0.

Using the above format, the floating-point number -12.5 is stored as a hexadecimal value of 0xC1480000. In memory, this value appears as follows:

	Address+0	Address+1	Address+2	Address+3
Contents	0xC1	0x48	0x00	0x00

1.3.2. WAKE Symbol mode

In the symbol mode the field **Data1...DataN** is considered a list of parameters given as symbols and separated by the space from each other. The first two bytes of the command frame and the last two bytes of the information frame are not separated.

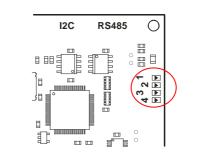
The integer parameters can be both in the decimal and hexadecimal format. In the hexadecimal form each nibble (a tetrad) has the following form:

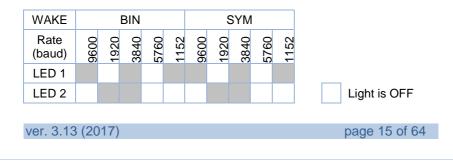
page 14 of 64

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'.

A couple of adjacent symbols corresponds to a byte written in a hexadecimal form.

Thus, from the above-said it follows that for the successful connection with the Device a proper command interface, a mode (symbol or binary) and an exchange rate should be chosen.


1.3.3. Connection


The device can be adjusted to different rates of communication. Each of the interfaces available can be command. The WAKE data format may be either symbol or binary.

During 1 sec after the Device switched on, the LEDs indicate the rate of exchange via the interfaces and the mode WAKE as shown below.

There are four LEDs on the Digital Control Board (LED 1...LED 4).

Just after switching ON the Device, during 1 sec LEDs show the exchange rate per interface and the mode WAKE corresponding to the Table below

 PL Engineering Ltd
 Controller DX5100 / System of Commands

 LED 3
 Light is ON

Also after the switching on, the Device outputs an information line of the format given in the Table below. The line is outputted into the interface RS232 as well as into the interface RS485 (unless it is command).

The output is carried out with the rate to which the Device is tuned.

	TEC controller	NetAdr=	hh	DevId=0200 WAKE-RS	485	-SY
			1		2	3
1	Network device a	ddress-01(de	fault)ī	7F		
2	Command interface RS232 (default) RS485	ce				
3	Data format WAK BIN (default) SYM	E				

This information can be used in case there are difficulties while connecting with the Device.

If connecting to the interface that at present is not the command one, it is impossible to operate the device at once. To give the connected interface the status command for the current session it is necessary to send the sequence of symbols «\$&%» to an appropriate COMport.

The reception of this sequence via not the command interface switches the device into the mode of commands reception via this interface. The specified sequence of symbols can be given in any terminal program. Also it is possible to output it by the command 02h - «Transfer an echo».

02 __@\$&%___

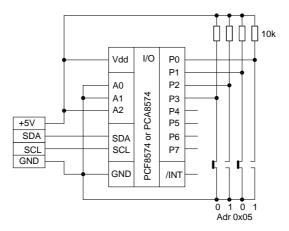
page 16 of 64

LED 4

	1 2			
1	Command code hex			
	Symbol line			

2 switch the reception of commands to the interface on which this command is accepted. The response to this command is not sent.

The protocol WAKE will further work via the interface by which the command has arrived. However, after turning off and repeated switching on of the device, the command interface will be again the one established by the command 4Bh.


In version 3 of the firmware it is possible to set the controller address not programming by a command but from the outside device.

The presence of the device number 05 (for the command 0x44) on the bus I2c allows setting the address of the controller on the bus RS-485. This device should be the PCA8574 or PCF8574 - Remote 8-bit I/O expander for I2C-bus. The address inputs of this device should be A0=0, A1=0, A2=1. In this case four less significant bits of data input are interpreted as an address of the controller in the network RS-485. The address should be generated by the appropriate signals on pins of the microcircuit. The availability of the microcircuit is checked just after switching on of the controller.

P3	bit D3 of controller address in the network RS-485
P2	bit D2 of controller address in the network RS-485
P1	bit D1 of controller address in the network RS-485
P0	bit D0 of controller address in the network RS-485

If the address is set this way, it has a priority over the address set by command 07.

Controller DX5100 / System of Commands

More significant bits of this microcircuit can be used, for example, for LED control. Then it is always necessary to set less significant bits in a high level.

page 18 of 64

2. SYSTEM OF COMMANDS

1.4. **Commands Performance**

A command is performed under the conditions:

- Coincidence of the device address transmitted in the field ADDR with the address of the device receiving the packet or ADDR=0x00 (broadcasting transmission). If the interface RS232 is used as the command one, the value of the field ADDR may not coincide with the Device net address.
- Coincidence of the device identifier transmitted in the data block. with the identifier of the device receiving the packet;
- The command format is not broken and the values of parameters do not leave beyond allowable limits.

For the description of commands the command code and its parameters are specified. The following designations are used:

- number of ADC or number of TEC channel (of PID regulator) or number of DAC.

ADC numbers and appropriate measured parameters are in the table:

0	Supply voltage
1	TEC1 voltage
2	TEC2 voltage
3	TEC1 current
4	TEC2 current
5	TEC1 temperature
6	TEC2 temperature

TEC channel number value and DAC number can be «0» or «1».

The following abbreviations are used for the description of parameters depending on their types:

ver. 3.13 (2017)

page 19 of 64

PL Engineering Ltd Controller DX5100 / System of Commands

uc	unsigned char	integer decimal number
ud	unsigned int	integer decimal number
ul	unsigned long	integer decimal number
е	float	floating point number
f	float	floating point number
S	string	line of symbols
h	hex	hexadecimal number (09, AF)

For the symbol mode these abbreviations determine a type and form of parameters. For the binary mode they only do a type of parameters. The figure after "e" and "f" indicates a number of digits after the point (comma).

1.5. Device Status

The LSB status byte (the last byte) value:

0x01	error EEPROM
0x02	unknown command
0x04	no ready data for telemetry (response)
0x08	TEC voltage at Z-metering does not drop for too long
0x10	error in parameters or command format
0x20	reception RS-232 buffer overfilling
0x40	reception RS-485 buffer overfilling
0x80	voltage supply error

Attention! The error of supply voltage (0x08) is accompanied by switching-off of voltage converters. The error remains even after voltage returning to allowable limits 12±10%

page 20 of 64

The MSB status byte value:

0x01	TEC1 temperature is beyond the limitations
0x02	TEC2 temperature is beyond the limitations
0x04	TEC1 temperature is within the setting
0x08	TEC2 temperature is within the setting
0x10	Command performance is interrupted

1.6. Table of Commands

Mnemomics	Code	Ρ	arameters	Description	Inf Frame			
	System commands							
CMD_ECHO	0x02	s		// send echo	S			
CMD_INFO	0x03			// send device identifier	hhhh			
CMD_GetVer	0x04			// send device firmware version	S			
CMD_GetInf o	0x05			// send device information	S			
CMD_SetInfo	0x06	s		// write device information				
CMD_SetAdr	0x07	uc		// set network address	uc			
CMD_StTel	0x40	uc	hh hh	// set telemetry status	hh hh			
CMD_get_P RM	0x41			<pre>// send parameters stored in FLASH (backup)</pre>				
CMD_set_P RM	0x42			// receive parameters stored in FLASH (recovery from backup)				
CMD_I2C	0x44	uc	hh hhhh hh	// operations with bus I2C	hh hh hh hh hh hh hh hh			
CMD_Prog_ T	0x45	uc	uc uc f ud hh uc	// Managing of programs of change in time	uc uc uc f2 ud hh uc			
CMD_get_Te I	0x46			// send telemetry line				
CMD_Krt_O K	0x49	Nº	uc uc f	// criterion of signal of settling				

ver. 3.13 (2017)

page 21 of 64

PL Engineering Ltd Controller DX5100 / System of Commands

Mnemomics	Code	P	arameters	Description	Inf Frame				
CMD_St_HW	0x4a			// status of devices in system	hh hh hh				
CMD_Infs_W k	0x4b	uc	uc uc	// set status to interface					
CMD_Dig_O ut	0x4d	uc		// enable of digital output	uc				
CMD_Dig_In	0x4e	uc	hh	// control of digital intput	uc hh				
Commands of Work with ADC									
CMD_ClbrA DC	0x10	N⁰	uc	// hardware calibration of ADC	hh hh				
CMD_ClbrK_ ADC	0x11	N⁰	f	// calibration of ADC (calculation of calibrating ADC coefficients)					
CMD_Wr_K_ ADC	0x12	N⁰	е	// writing calibrating ADC coefficients					
CMD_Kfiltr	0x13	N⁰	uc	// writing ADC filter coefficient					
CMD_AskKA DC	0x14	N⁰		// sending ADC conversion coefficient and filter coefficient	hh e6 uc hh				
CMD_AskOf st	0x15	N⁰		// sending ADC register of offset	hh hh hh hh				
CMD_StartA DC	0x16	Nº		// starting measurement in ADC channel	hh hhhhhhh h e6 e6				
CMD_Only_1	0x17	N⁰	1/0	// measurements of one ADC channel (fast measurement)	hh				
CMD_Sever	0x18	hh		// mask on ADC channels	hh				
CMD_PGA	0x19	N⁰	uc	// PGA of ADC thermistor channel					
CMD_Polino m	0x1a	N⁰	uc	// writing thermistor polynomial order					
	0x1a	N⁰	uc f	<pre>// writing thermistor polynomial coefficients</pre>					
CMD_ask_P ol	0x1b	N⁰	uc	// sending thermistor polynomial coefficient	hh uc uc e6				
				// Save the Current Settings of Thermistor Input					
CMD_saveT erm	0x1c	uc		// Save the Current Settings of Thermistor Input					
CMD_loadTe rm	0x1d	uc	uc	// Restore Thermistor Input Settings	hh				
CMD_get_T	0x1e			// Save Table of Settings (backup)					
2000 00 of	C 4				(0047)				
page 22 of 64 ver. 3.13 (2017)									

Mnemomics	Code	Ρ	arameters	Description	Inf Frame				
BL									
CMD_set_TB L	0x1f			// Restore Table of Settings (Backup)					
Commands of work with DAC									
CMD_set_D AC	0x21	Nº	f	// setting DACs in Volts	hh ud				
CMD_seth_D AC	0x22	Nº	ud	<pre>// setting DACs directly (no control of limitations)</pre>	hh ud				
CMD_Wr_K_ DAC	0x23	Nº	ff	// writing DAC calibrating coefficients					
CMD_AskKD AC	0x24	Nº		// sending convertion coefficient and DAC max values	hh e6 e6 f2				
CMD_DAC_ max	0x25	Nº	f	// writing max voltage					
CMD_U_Tre g	0x26	Nº	f	// voltage of T-regulation	hh f2				
			Commands	s of work with PID controller					
CMD_Pol_T EC	0x30	Nº	uc	// setting of TEC polarity					
CMD_set_PI D	0x31	Nº	fff	// writing parameters of PID controller					
CMD_ask_PI D	0x32	Nº		// sending parameters of PID controller	hh f6 f6 f6				
CMD_setCur rT	0x33	Nº	uc	// current thermistor 0-10uA 1-93uA	hh uc				
CMD_askT_ PID	0x34	Nº	[f]	// sending/set setpoints of PID controller	hh f2 f2 uc uc				
CMD_strt_PI D	0x35	Nº	uc f	// starting controll					
CMD_tun_PI D	0x36	Nº	hh	// output parameters of PID controller (bits)	hh hh				
CMD_Zmetr	0x37	N⁰	uc uc	// starting Z-meter	S				
CMD_Zprmtr	0x38			// storage of Z-metering parameters (as reference)					
CMD_Z_I	0x39			// sending Z-meter current	e6				
CMD_Z_I	0x39	f		// storage of Z-meter current					
CMD_Boot	0x3b	Nº	uc f ud	// start of regulation after restarting	hh hh f2 ud				

ver. 3.13 (2017)

page 23 of 64

Controller DX5100 / System of Commands

Mnemomics	Code	Pa	arameters	Description	Inf Frame
CMD_set_Li mT	0x3c	N⁰	ffuc	// writing limiting temperatures	
CMD_get_Li mT	0x3d	Nº		// sending limiting temperatures	hh f2 f2 uc
CMD_ResZ mtr	0x3e			// sending Z-metering results	hh f2 e2 f2
CMD_TecZm tr	0x3f	N⁰		// sending Z-metering parameters	hh f2 e2 f2
CMD_PID_tu n	0x51	N⁰		// auto tuning PID	S
CMD_REST	0x53			// reset controller	
CMD_EKR	0x54		[#screen]	// control of indication board	

1.7. Commands Descriptions

1.7.1. Send Echo

In response a frame with data field the same as the field (Data1 \dots DataN) of the received frame is sent.

	02	S	
	1	2	
1	1 Command code hex		
2	Symbol	ic line	

In response a frame with data field the same as the field (Data1 \dots DataN) of the received frame is sent.

By sending this command, one can interrupt long procedures (for example, those of Z-meter).

1.7.2. Send Device Identifier

03	
1	
page 24 of 64	ver. 3.13 (2017)

1 Command code hex

In response network address and device identifiers are sent.

Example:

0102

TEC controller (02) with address 01 on bus RS-485 (01)

1.7.3. Send Device Firmware Version

04 1

1 Command code hex

In response the device name and firmware version are sent.

Example:

DX5100.022

Device DX5100 with firmware version - 022

1.7.4. Send Information of Device

05 1

1 Command code hex

In response serial number and date of issue of device are sent.

Example:

ver. 3.13 (2017)

page 25 of 64

PL Engineering Ltd Controller DX5100 / System of Commands

#C09-P16-P17-I06 10.05.2009

Serial number of boards and date of issue of device

1.7.5. Write Information into Device

06 s 1 2

1 Command co	de hex
--------------	--------

2 Serial number of boards and date of issue of device (max 32 symbols)

1.7.6. Set Network Device Address

	07	uc
	1	2
1	Command code hex	
2	Network device address (1127)	

Command 07 can be transferred at broadcasting addressing.

1.7.7. Set Telemetry Status

	40	uc	hh	hh
	1	2	3	4
1	Comma	and coo	de hex	
2	Teleme	etry out	put per	iod
3	Teleme	etry stat	tus MSI	В
4	Teleme	etry stat	tus LSE	3
4	Teleme	etry stat	tus LSE	3

page 26 of 64

Command 40 can be transferred at broadcasting addressing. When a broadcasting command is received, the telemetry output stops.

The parameter period of output is set in 0.01 s. To set the period equal 1 s one should set d equal 100 (uc=100). The maximal value uc=255. The period of telemetry output also depends on required parameters being ready. Thus, if switching on the output of all parameters (LSB is 7F), the minimal period of telemetry will be about 0.5 s. This time corresponds to the time of conversion of all the ADC channels. To increase the telemetry rate it is necessary to include only the needed parameters in the telemetry block and to use the reducing quantity of processable ADC channels commands (described further).

The functions of all status LSB and MSB are given in the table below.

Each bit allows/forbids (1/0) either a function, or inclusion of a parameter in the telemetry block.

		LSB	
BIT	Mask	Function or parameter in telemetry block	Units
0	01	Supply voltage measured (f2)	V
1	02	TEC1 voltage measured (f2)	V
2	04	TEC2 voltage measured (f2)	V
3	08	TEC1 current measured (f1)	А
4	10	TEC2 current measured (f1)	А
5	20	TEC1 temperature measured (f3)	K
6	40	TEC2 temperature measured (f3)	K
7	80	Reserved	
		MSB	
BIT	Mask	Function or parameter in telemetry block	Units
0	01	TEC1 channel status (hh) (for bit values - se command 4A)	e
1	02	TEC2 channel status (hh) (for bit values - se command 4A)	e
2	04	Device status (hhhh - two bytes at the end	of
ver. 3	.13 (2017)) pa	ge 27 of 64

PL Engineering Ltd Controller DX5100 / System of Commands

		the information frame) bits values Device status see section 2.2	
		The bytes of the Device status are only added to the telemetry of the non-command interface, as in the telemetry by the command 46 the Device status is present at the end of the information frame	
3	08	Enable anything besides the telemetry be outputted into a non-command interface	
4	10	TEC1 temperature setpoint (f2)	К
5	20	TEC2 temperature setpoint (f2)	К
6	40	Permission of telemetry output into the command interface.	
		It should be noted that the given mode is not supposed by the protocol WAKE, i.e. it is <u>non- standard</u> since it results in periodic output of the frames WAKE on the bus by the slave-device without reception of a command frame.!!! See the command 46h.	
7	80	Permission of telemetry output into a non- command interface	

The first parameter in the telemetry is the time in the units 0.01 sec (ul). The time is continuously calculated and reset after sending the command 40.

The telemetry line is finished by the symbol ";".

If the command is performed successfully, the values of two status bytes are outputted (hh hh).

Attention! If the telemetry line length exceeds 62 symbols, that may tell upon the time-dependent functions of the system. For example, the PID period "beating" can be observed.

At the telemetry status 0xB7, 0x66 the line will contain values of two channels voltages, two channels temperatures, PID two channels statuses, device status, setting values of PID two channels. The line length will not exceed 62 symbols.

To estimate the telemetry line length the following Table can be used (taking into account that the parameters are separated by spaces):

page 28 of 64

Parameter	Symbols number	Example
Time	7	1364400
Supply voltage measured (f2)	5	12.02
TEC1 voltage measured (f2)	5	-4.12
TEC2 voltage measured (f2)	5	-1.23
TEC1 current measured (f2)	4	0.53
TEC2 current measured (f2)	4	2.54
TEC1 temperature measured (f2)	6	299.53
TEC2 temperature measured (f2)	6	310.12
TEC1 channel status (hh)	2	10
TEC2 channel status (hh)	2	00
Device status (hhhh – two bytes corresponding to those at the end of the information frame)	4	0000
TEC1 temperature setpoint (f2)	6	300.00
TEC2 temperature setpoint (f2)	6	310.00

1.7.8. Send Parameters Stored in FLASH (Backup)

	41
	1
1	Command code hex

After sending this command the device outputs contents of structure with parameters kept in non-volatile memory to a command or noncommand interface. These parameters are such as calibrating coefficients, network addresses, etc.

Each byte is transferred as two hexadecimal figures. The first 4 figures (2 bytes) are the size of structure outputted, in bytes. This command is used for backup of stored parameters. Output of

ver. 3.13 (2017)

page 29 of 64

parameters will begin into both the interfaces after reception of any symbol by any interface.

17.9 Write Parameters Stored in FLASH

After sending this command, the device expects for data to come and interprets them as given by the command 41. The data received are stored in the structure.

For the correct execution of this command in a terminal program to set the delay for characters 50mS.

ASCII Setup
ASCII Sending
Send line ends with line feeds
Echo typed characters locally
Line delay: 100 milliseconds.
Character delay: 50 milliseconds.
ASCII Receiving
Append line feeds to incoming line ends
Eorce incoming data to 7-bit ASCII
Wrap lines that exceed terminal width
OK Cancel

page 30 of 64

For the storage of the entered data in the non-volatile memory it is necessary to send a command of setting any parameter. For example, 0x07 - "Set network address".

1.7.10. I2C Bus Operations

By this command it is possible to read or write data in devices connected to the bus I2C.

The bytes read (hh hh...) are transferred into the information frame.

1.7.11. Management of Program in Time

The Controller has a function "Program" - changing of operation mode in time. This function is carried out by the programs stored in the non-volatile memory.

- Programs number up to 16 (0-15)
- Number of lines in program up to 50 (0-49) -

Each line in program contains the following:

Temperature (setpoint) (K) for modes 2 and 3 or Voltage (V) for mode 4 (see below)

ver. 3.13 (2017)

page 31 of 64

- Time after which one has to leave this line of program (number of seconds max 65535)
- Most significant nibble mode of current line (interpretation of the field of the first parameter of the program line as temperature or voltage). Possible values:
 - 0 Interdiction of regulation
 - 2 T-regulation
 - 3 Temperature maintenance (PID)
 - 4 Constant voltage
 - 5 Setting the voltage of T-regulatory
 - 6 Adjust the settings
 - 7 Exit from the program without shutting down the last mode
- Least significant nibble number of program to go (0-15) on the expiration of the period Time
- Number of line to go

Each program (memory space for programming) has a status:

- 255 there is no program
- 0 there is a program and it is the program beginning
- 1-244 there is a program and it is not the program beginning

Stop the regulatory process and to stop work on the program, you can specify in the address line of transition value 0xFF (255).

If the text of the program line number where you want to go - 0xFF, respectively, will be switched off (regulation will be stopped)

It is possible to proceed to any line of any program - programs can be cascaded and cycled (repeat periodically). Cascading provides the duration of the process 50 steps and more.

The cascading means that after one program performed another program starts.

It is possible to stop the regulation process. For this purpose the set number of the program to proceed with should exceed 15.

By this command it is possible to write or read a line of a program, to set or read the status of a program.

					Pr				
	45	uc	uc	uc	f	ud	hh	uc	
	1	2	3	4	5	6	7	8	
1	Comma	ind code	e hex						
2	1-readir 2-setting	d of prog ng of pro g of prog ng of prog	ogram lir gram sta	ne atus					
3	Number of program to deal with								
4	Number of program line(0-49) if MODE=0 or MODE=1 Or status (0-255) if MODE=2 or MODE=3								
5	Setpoint - temperature to maintain (K) for modes 2 and 3 Voltage for mode 4								
б	Time (s) to maintain the setting value (setpoint)								
7	Most significant nibble – mode of current line (interpretation of the field fl (parameter 5) as temperature of voltage) 0 Interdiction of regulation 2 T-regulation 3 Temperature maintenance (PID) 4 Constant voltage Least significant nibble - number of program to go (0-15) after expiration of Time								
		-				-			

1.7.12. Send Telemetry Line

	46
	1
1	Command code hex

ver. 3.13 (2017)

page 33 of 64

In response to this command, the device sends an information frame with a telemetry line. The parameters values are given according to status (see the command 40h – set the status of telemetry).

1.7.13. Criterion of Signal of Settling

	49	uc	uc	uc	f				
	1	2	3	4	5				
1	Comma	nd code	hex						
2	TEC channel number								
3	2255 - number of periods of PID Controller after which if temperature is within the limits, the appropriate status signal is on								
4	2255 - number of periods of PID Controller after which if temperature has gone beyond the limits, the appropriate status signal is off								
5	Allowab	le devia	tion						

The parameter 4 should not exceed parameter 3. Both parameters should not be smaller than «2». When the board DX5107 is used, the relay switches according to parameters of the command 0x49 (see also the command 0x4D).

1.7.14. Status of Devices in System

	4A		
	1		
1	Command code hex		

The field «PARAMETERS» of the information frame:

	hh	hh	hh		
	1	2	3		
1	0x01-E	EPROM	/ices on b 24c256 with data		
nac	ge 34 o	of 64			ver. 3.13 (20

Controller DX5100 / System of Commands

PL Engineering Ltd.

0x04-PCF8574 with control bus LCD
0x08-RTC DS1307

TEC1 channel status

0x01- regulation is on

0x02- TEC1 temperature within the setting

0x04- 1-heating 0-cooling

0x08- operation by program of changing in time

- 2 0x10- converters channel is present
 - 3 MSB 0x20...0x80- regulation mode
 - 0- no regulation
 - 1- by program
 - 2- T-regulation
 - 3- to the setting temperature
 - 4- constant voltage

TEC2 channel status

- 0x01- regulation is on
- 0x02- TEC2 temperature within the setting
- 0x04- 1-heating 0-cooling
- 0x08- operation by program of changing in time
- ³ 0x10- converters channel is present
 - 3 MSB 0x20...0x80- regulation mode
 - 0- no regulation
 - 1- by program
 - 2- T-regulation
 - 3- to the setting temperature
 - 4-constant voltage

1.7.15. Setting Command Status to Interface

	4B	uc	uc	uc		
	1	2	3	4		
1	Comma	nd code	hex			
2				be commar be commar		
3	0 – binary mode WAKE 1 – symbol mode WAKE					
4	Rate of	exchand	ae			

ver. 3.13 (2017)

page 35 of 64

PL Engineering Ltd Controller DX5100 / System of Commands

0-9600 1-19200 2-38400 3-57600 4-115200

> Command 4B can be transferred at broadcasting addressing. When a broadcasting command is received, the interface RS485 will be command.

After sending this command a specified interface becomes command after restarting the device.

1.7.16. Digital Output Enable

	4D	uc
	1	2
1	Comma	nd code hex
2	0- disab	le, 1- enable of digital output

By this command it is possible to enable/disable corresponding relay switch of the circuit of the digital input-output of DX5107 when a setpoint temperature is achieved (according to parameters of the command 0x49).

The command can be sent without parameters.

The field «PARAMETERS» of the information frame:

hh 1

1 0- disable, 1- enable of digital output

1.7.17. Control of Digital Input

4E uc hh

page 36 of 64

Controller DX5100 / System of Commands

PL Engineering Ltd.

	1	2	3			
1	Comma	nd code	hex			
2	TEC cha	annel nu	mber			
3			er of progra er of progra	-	0	

By this command it is possible to set numbers of programs, transition to which is carried out by signals of corresponding inputs of the board of the digital input-output DX5107.

The command can be sent without parameter 3.

The field «PARAMETERS» of the information frame:

	hh	hh	
	1	2	
1	TEC ch	nnel number	
2	D0D3 D4D7	- number of program, which run on falling - number of program, which run on rising	

1.8. Commands of Work with ADC

In the description of commands of work with ADC when referring to ADC the number of a channel is given. In the data field of the information frame the number of ADC input is displayed. Therefore one ADC input can be used for measurement of two channels since there are external multiplexers in the device.

Measuring channel	Parameter	ADC input
0	Supply voltage	00
1	TEC1 voltage	01
2	TEC2 voltage	01
3	TEC1 current	02
4	TEC2 current	02

ver. 3.13 (2017)

page 37 of 64

PL Engineering Ltd

Controller DX5100 / System of Commands

Measuring channel	Parameter	ADC input
5	TEC1 temperature	03
6	TEC2 temperature	04

1.8.1. ADC Hardware Calibration

The command serves for hardware calibration of ADC.

	10	uc	uc	
	1	2	3	
1	Comma	nd code	hex	
2	ADC ch	annel nu	umber	
3	4- Syste	Calibration m Calib	on for Off	set and Gain Offset only in only

The command starts calibration of ADC channel. At parameter d=4 there is a system offset calibration. When sending this command it is necessary to provide a zero level on the appropriate input of measurement.

At parameter d=3 there is a self-Calibration for Gain by the reference voltage. This calibration is accompanied by filling of the appropriate registers of ADC microcircuit. The command is terminated by record of registers of ADC microcircuit in the non-volatile memory for a further application at switching onto the ADC channel calibrated.

1.8.2. ADC Calibration

	11	uc	f	
	1	2	3	
1	Comma	nd code	hex	
2	ADC ch	annel nu	umber	
3	Value o	f a calib	rated lev	vel of physical value
ра	age 38 c	of 64		ver. 3.13 (2017)

The command can be applied to the ADC channel for which all hardware calibrations (see the command 10h) are done. During the calibration the calibrating coefficient of linear function of conversion is calculated and stored in the non-volatile memory. For the calibration of temperature measurement channel the physical value level should be specified resistance of the calibrating resistor.

1.8.3. Writing Calibration ADC Coefficients

	12	uc	f
	1	2	3
1			
			-
2	ADC ch	annel nu	mber
3	Calibrat	ion coeff	icient valu

The command serves for storing the calibration ADC coefficient into the non-volatile memory.

1.8.4. Writing ADC Filter Coefficient

	13	uc	uc
	1	2	3
1	Comma	nd code	hex
2	ADC ch	annel nu	umber
3	Filter co	efficient	value

The command serves for recording the coefficient of the digital filter that influences the ADC readouts into the non-volatile memory.

If the filter coefficient is K, the filter time constant is $tau=K^*dT$, where dT is time of ADC quantization. Therefore at K=1 the ADC indications are not filtered.

ver. 3.13 (2017)

page 39 of 64

When the PID controller is in work, one should not apply the digital filter to ADC signals of temperature measurement.

1.8.5. Sending ADC coefficients

	14	uc
	1	2
1	Comma	ind code hex
2	ADC ch	annel number

The field «PARAMETERS» of the information frame:

	hh	e6	uc	hh						
	1	2	3	4						
1	Number	of ADC	input							
2	2 Calibration coefficient value									
3	Filter coefficient value									
	determi	nes amp	lification	coefficient I	PGA= 2 ^{hh}					
4	0-1	2-4	4-16	6-64						
	1-2	3-8	5-32	7-128						

1.8.6. Sending Registers of ADC Channel Offset

	15	uc
	1	2
1	Comma	and code h
2	ADC ch	annel num

The field «PARAMETERS» of the information frame:

page 40 of 64

	hh	hh	hh	hh			
	1	2	3	4			
1	Number	r of ADC	input				
24	ADC ch calibrati	ADC channel offset register values obtained as a result of offset system calibration					

1.8.7. Starting Measurement in ADC Channel

	16	uc
	1	2
1	Comma	ind code hex
2	ADC ch	annel numbei

The field «PARAMETERS» of the information frame:

	hh	hhhhhhh	eб	e6	
	1	2	3	4	
1	Numbe	r of ADC input			
2	Measur	ement of ADC	channe	el in hex	adecimal units
3	Measur coefficio	ement of ADC ents (for the ch	channe annels	el in phy 5 and 6	sical units taking into account calibration – value of thermistor resistance)
4					sical units taking into account calibration – temperature value)

1.8.8. ADC One Channel Measurement

To increase the speed of digitalizing there is a command 17h that transfers ADC into a mode in which the channels are not switched, and the one chosen is measured. This mode can be used for measuring the object dynamic characteristics.

17 uc uc

ver. 3.13 (2017)

page 41 of 64

	1	2	3				
1	Comma	ind code	hex				
2	ADC ch	annel nu	umber				
3		-		le of one ch le of one ch			

The field «PARAMETERS» of the information frame:

	hh	
	1	
		h bit set in a position corresponding to a chosen channel, if the channel measurement is chosen, otherwise - 0x00
		ADC channel
	01h	supply voltage
1	02h	TEC1 voltage
1	04h	TEC2 voltage
	08h	TEC1 current
	10h	TEC2 current
	20h	TEC1 temperature
	40h	TEC2 temperature

1.8.9. Mask on ADC Channels

If some ADC channels are not needed, they can be excluded from the process of measurement, after sending the command 18h.

	18	hh
	1	2
1	Comma	and code hex
2	Mask	

The field «PARAMETERS» of the information frame:

page 42 of 64

Controller DX5100 / System of Commands	PL Engineering Ltd.
hh	
1	
1 Mask	

The mask is interpreted as a byte submitted in the hexadecimal form. Every bit of this byte either includes (bit "1"), or excludes (bit "0") a corresponding ADC channel in/from the process of measurement.

Mask	ADC channel
01h	supply voltage
02h	TEC1 voltage
04h	TEC2 voltage
08h	TEC1 current
10h	TEC2 current
20h	TEC1 temperature
40h	TEC2 temperature

1.8.10. PGA of ADC thermistor channel

	19	uc	uc			
	1	2	3			
1	Comma	and code	hex			
2	ADC ch	nannel nu	umber			
	determ	ines Prog	grammable	Gain Amplifier =	= 2 ^{hh}	
3	0-1	2-4	4-16	6-64		
	1-2	3-8	5-32	7-128		

1.8.11. Thermistor coefficients

The command is used for setting the function of conversion of the thermistor resistance into temperature T=f(R).

ver. 3.13 (2017)

page 43 of 64

PL Engineering Ltd

There may be set two types of such functions – one given by polynomial and one given by the Steinhart and Hart equation.

Thermistor polynomial coefficients

When using a polynomial function, it is supposed to apply a fifth-degree polynomial.

 $T=A_0 + A_1*R + A_2*R^2 + A_3*R^3 + A_4*R^4 + A_5*R^5$

If the polynomial degree is lower than five, unnecessary coefficients should be set zero.

Steinhart and Hart equation

The thermistor coefficients A, B, and C linearize the thermistor temperature resistance curve and are related using the Steinhart and Hart equation as follows:

$$\frac{1}{T} = A + B[\ln R] + C[\ln R]^3$$

Where:

T = Temperature (K)

R = Thermistor resistance (ohms)

A, B, C = Thermistor sensor coefficients

These coefficients should be set to values specified by the thermistor manufacturer.

This command is interpreted differently depending on parameters number.

Writing type of thermistor conversion function

Writing thermistor coefficients

	1A	uc	uc	f	
	1	2	3	4	
-	Comma	nd code	hex		
2	ADC ch	annel ni	umber		
3	thermist	or coeff	icient or	der (n=05)	
	thermist	or coeff	icients		
		n	Steir	nhart and Hart equation	Polynomial
		0		А	A ₀
Ł		1		В	A ₁
:		2		С	A ₂
		3			A ₃
		4			A ₄
		5			A ₅

Sending thermistor coefficient

	1B	uc	uc				
	1	2	3				
1	Comma	nd code	hex				
2	ADC ch	annel nu	umber				
3	thermist	tor coeff	icient ord	er (n=05)			

The field «PARAMETERS» of the information frame:

	hh	uc	uc	еб
	1	2	3	4
1	ADC ch	annel nu	umber (S	5, 6)
ver	. 3.13 (2017)		

Type of conversion function

- 2 3 Steinhart and Hart equation
 - 5 polynomial function
- 3 thermistor coefficient order (n =0...5)

thermistor coefficients

	n	Steinhart and Hart equation	polynomial
	0	A	A ₀
٨	1	В	A ₁
4	2	С	A ₂
	3	-	A ₃
	4	-	A ₄
	5	-	A ₅

1.8.12. Save the Current Settings of Thermistor Input

	1C	uc
	1	2
1	Comma	nd code hex
2	TEC cha	annel number

The current calibration settings of thermistor measurements input are stored in a line, according to the parameter of the set current and ADC gain.

A table line stores: the conversion factor, the values of calibration offset registers and sign validity data.

1.8.13. Restore Thermistor Input Settings

TEC channel number 2

Parameter corresponding to the set characteristics of the calibration (to the 3 maximum possible thermistor resistance)

It is checked whether the data stored in the table are correct (data saved by the command 1C). If the data are correct, the calibration parameters, the values of the measuring current and channel ADC gain are filled according to them.

The field «PARAMETERS» of the information frame:

	hh
	1
	The command execution result:
1	0x01- parameters are restored
	0x00- requested parameters aren't stored by the command1C.

1.8.14. Save Table of Settings (Backup)

	1E
	1
1	Command code hex

After sending this command, the controller outputs the contents of the table with the parameters stored in the nonvolatile memory into the command and non-command interfaces.

Each byte is transmitted as two characters of the hexadecimal digits. This command is used for backup of parameters stored. The output of parameters will begin into both interfaces after reception of any character by any interface. The data corresponding to one line are stored in 8 bytes.

1.8.15. Restore Table of Settings (Backup)

PL Engineering Ltd	Controller DX5100 / System of Commands
1F	
1	
1 Command code hex	

After receiving this command, the device expects data to come by the command or non-command interface and interprets them as stored by the command 1E. The data received are stored in the nonvolatile memory.

For the correct execution of this command, set the delay for characters 50 ms when the file is outputted.

ASCII Setup
ASCII Sending
Send line ends with line feeds
Echo typed characters locally
Line delay: 100 milliseconds.
Character delay: 50 milliseconds.
ASCII Receiving
Append line feeds to incoming line ends
Force incoming data to 7-bit ASCII
Wrap lines that exceed terminal width
OK Cancel

1.9. Commands of Work with DAC

In the description of commands of work with DAC, when addressing to DAC the TEC channel number is indicated. In data field of the information frame a number of output of the DAC processor is given.

page 48 of 64

1.9.1. Setting DACs in Volts

			~
	21	uc	£
	1	2	3
1	Command code hex		
2	TEC cha	annel nu	mber
3	Voltage	in Volts	

When the command is executed, the set voltage does not exceed maximal for a chosen channel.

The field «PARAMETERS» of the information frame:

	hh	ud
	1	2
1	DAC ch	annel
2	Voltage	in DAC units

1.9.2. Setting DACs Directly

	22	uc	ud
	1	2	3
1	Comma	nd code	hex
2	TEC cha	annel nu	ımber
3	Voltage	in DAC	units

Attention! Check for excess of maximal voltage is not done!

ver. 3.13 (2017)

page 49 of 64

The command is used for calibration. It should be used at voltage up to 8 V.

The field «PARAMETERS» of the information frame:

	hh	ud
	1	2
1	DAC ch	annel
2	Voltage	in DAC units

1.9.3. Writing DAC Calibration Coefficients

	23		-				
		uc	f	f			
	1	2	3	4			
1	Command code hex						
2	TEC channel number						
3	Value of offset of linear function of conversion						
4	Value of proportionality factor of linear function of conversion						

The coefficients determine the function by which a value loaded to DAC is obtained, depending on voltage needed.

1.9.4. Sending Coefficient and DAC Maximal Values

	24	uc
	1	2
1	Comma	and code hex
2	TEC ch	annel numbe

The field «PARAMETERS» of the information frame:

page 50 of 64

	hh	e6	еб	£2
	1	2	3	4
1	DAC ch	annel		
2	Value of	offset c	of linear	function
3	Value of	proport	ionality	factor of

TEC maximal voltage 4

1.9.5. Writing Maximal Allowable Voltage

	25	uc	f
	1	2	3
1	Comma	nd code	hex
2	TEC cha	annel nu	mber
3	TEC ma	aximal vo	oltage (V)

1.9.6. Voltage of T-reg

	26	uc	f
	1	2	3
1	Comma	nd code	hex
2	TEC cha	annel nu	mber
3	voltage	of T-reg	ulation (V)

The field «PARAMETERS» of the information frame:

	hh	£2
	1	2
1	TEC ch	nnel number
2	Value o	voltage of T-regulation (V)

ver. 3.13 (2017)

page 51 of 64

The command can be sent without parameters.

1.10. Commands of Work with PID

1.10.1. Setting of TEC Polarity

Management of TEC voltage polarity is carried out by the command 30h.

	30	uc	uc
	1	2	3
1	Comma	nd code	hex
2	TEC cha	annel nu	ımber
	0- TEC	is off	
3	1- TEC	is heatir	ng
	2- TEC	is coolin	g

The command execution is accompanied by the message of the form "bridge AA-BB" sent into a non-command interface, where AA is TEC channel number, BB is the third parameter of the command.

1.10.2. Writing Parameters of PID Controller

	31	uc	f	f	£			
	1	2	3	4	5			
1	Comma	and code	hex					
2	TEC ch	annel nu	mber					
3	Value o	f proport	ional co	efficient	of PID co	ontroller		
4	Value o	f integra	l coeffic	ent of P	D contro	ller		
5	Value o	f differer	ntial coe	fficient c	of PID con	troller		

1.10.3. Sending Parameters of PID Controller

page 52 of 64

Co	ntroller	DX510	00 / Sy	stem o	of Commands	PL Engineering Ltd.
	32	uc	f	f	f	
	1	2	3	4	5	
1	Comma	nd code	hex			
2	TEC ch	annel nu	mber			

The field «PARAMETERS» of the information frame:

	hh	£6	£6	£6
	1	2	3	4
1	TEC cha	annel nu	umber	
2	Value o	f propor	tional co	efficient
3	Value o	f integra	l coeffic	ent of P
4	Value o	f differer	ntial coe	fficient o

1.10.4. Set thermistor current

The command 33 can be sent without parameter 3.

The field «PARAMETERS» of the information frame:

	hh	uc
	1	2
1	TEC ch	annel numbe
2	0- curre	ent ∼1uA
ver	. 3.13 ((2017)

1- current ~83uA

1.10.5. Sending/Set Setpoints of PID Controller

	34	uc	[£2]				
	1	2	3				
1	Comma	nd code	e hex				
2	TEC channel number						
3	lf it is pr restartir			setpoint temperature of PID (setting value without			

The field «PARAMETERS» of the information frame:

	hh	£2	£2	uc	uc		
	1	2	3	4	5		
L	TEC cha	annel nu	Imber				
2	Value of setpoint temperature of PID controller (setting value)						
3	Value of deviation at which the signal of required temperature settling is generated in the status of PID controller						
Ł	Criterion of signal of setting value achieved (see command 49h)						
5	Criterior	n of sign	al of set	ting valu	ue gone	e (see command 49h)	

1.10.6. Starting Controller

	35	uc	uc	f		
	1	2	3	4		
1	Com	mand coc	le hex			
2	TEC	channel r	number			
			3		4	
3,4	0	Regulati	on stop		Not present	
	1	Regulati	on accord	ling to program	015 program to go to	

page 54 of 64

Controller DX5100 / System of Commands

PL Engineering Ltd.

2	T-regulation	Temperature to be maintained	
3	Temperature maintenance – PID starting – setting regulation	Temperature to be maintained (setting value)	
4	Constant voltage	Voltage to be maintained	

The command 35 can be sent at broadcasting addressing.

The command execution is accompanied by the message of the form "bridge AA-BB" sent into a non-command interface (if enabled, see the command 40), where AA is TEC channel number, BB is the third parameter of the command.

1.10.7. Parameters of Output of PID Controller

	36	uc	hh					
	1	2	3					
1	Comma	nd code	hex					
2	TEC channel number							
	Status b	yte - bit	s turn or	n "1" or off "0" certain functions				
	0x01	controls voltage output. I it is «0», voltage is off and it is only polarity that switches						
3	0x02	reserv	/ed					
	0x04			aracter of regulation. Setting this bit transfers the F-regulation (relay)				

The field «PARAMETERS» of the information frame:

	hh	uc
	1	2
1	TEC cha	annel number
	Status b	yte
2	0x01	controls voltage output. I it is «0», voltage is off and it is only polarity that switches
	0x02	reserved

ver. 3.13 (2017)

page 55 of 64

0x04 character of regulation. "1"- T-regulation (relay) 0x08 1-thermitor is present 0-thermistor is not present

1.10.8. Starting Z-meter

	37	uc	uc	uc			
	1	2	3	4			
1	Comma	nd code	hex				
2	TEC channel number						
3	Z-meter measurement time (s) 20255						
4	if "1" – c	only resi	stant me	asurem			

The field «PARAMETERS» of the information frame:

" Z-metr	uc 1	started. Wait!!! "
1 TEC channe	el nur	nber

Time indicated in parameters of the command 37h, is not the time of diagnostics. The time obviously should be quite more than the trebled time constant of the object. The diagnostics consists of the several intermediate stages, each of which takes time exceeding that specified in parameters of the command 37h. The time of diagnostics is estimated to be 5 times longer than the specified time.

During the diagnostics, as intermediate stages are over, the debugging information is outputted in the non-command interface.

After Z-metering is over, resistance (R), figure-of-merit Z, time constant (tau) are outputted into non-command interface (if there was no mistake «TEC voltage has not fallen for too long in Z-metering»).

page 56 of 64

Attention! The procedure of Z-metering is a long process during which commands are not received and information frames are not created. LED indication is ceased (its beginning again is a signal of Z-metering being over).

During the diagnostics of any channel, regulation on this channel stops.

It is possible to interrupt the procedure by sending the command "Send echo".

1.10.9. Storage of Z-Metering Parameters

By this command the found parameters are stored as reference ones reference for the given object.

1.10.10. Z-Meter Current

	39	f					
	1	2					
1	Command code hex						
2	Value of calibration resistance switch on to the channel PID1						

By this command the value of calculated current is stored in the nonvolatile memory and used for Z-metering calculations.

The field «PARAMETERS» of the information frame:

I	
ver. 3.13 (2017)	page 57 of 64

1 Electric current value of Z-meter

The command can be sent without parameters.

1.10.11. Switching On Regulation after Restarting

	3B	uc	uc	f	ud	
	1	2	3	4	5	
. C	comma	nd code	e hex			
2 T	EC ch	annel nu	umber			
				3		4
	0	Regu	ation sto	р	Not present	
5	1	Regu	ation ac	cording	015 program to go to	
	2	T-reg	ulation			Temperature to be maintained
	3	•	erature i ng – setti		Temperature to be maintained (setting value)	
	4	Const	ant volta	ge	Voltage to be maintained	

ິ program)

The field «PARAMETERS» of the information frame:

hl	n h	nh f2	ud				
1		2 3	4				
TEC	cha	annel n	umber				
				2	3		
	0	Regu	lation st	ор	Not present		
2	1	Regu	lation ad	015 program to go to			
3	2 T-regulation				Temperature to be maintained		
				maintenance – PID ing regulation	Temperature to be maintained (setting value)		
	4	Cons	tant volt	age	Voltage to be maintained		

time (s) after which to proceed to the program (only for Regulation according to 4 program) or 0

The command can only be sent with the parameter 2.

1.10.12. Writing Limiting Temperatures

	3C	uc	f	f	uc			
	1	2	3	4	5			
1	Command code hex							
2	TEC channel number							
3	Minimal allowable temperature							
4	Maximal allowable temperature							
5					happens /ice statu	to be beyond the set limits - the error us		

1.10.13. Sending Limiting Temperatures

	3D	uc
	1	2
1	Comma	and code hex
2	TEC ch	annel number

The field «PARAMETERS» of the information frame:

	hh	f2	f2	uc	
	1	2	3	4	
1	TEC channel number				
2	Minimal allowable temperature				
3	Maximal allowable temperature				
4	If during this time temperature happens to be beyond the set limits - the error				

ver. 3.13 (2017)

page 59 of 64

signal is outputted - see the device status

1.10.14. Sending Z-metering Results

3E 1

1 Command code hex

The field «PARAMETERS» of the information frame:

	hh	f2	e2	£2	
	1	2	3	4	
1	TEC o	hann	el nu	mber	hose parameters are given further
2	Resistance (R) (Ohm)				
3	Figure of merit Z (1000/K)				
4	Time constant tau (s)				

1.10.15. Sending Z-metering Parameters

	3F	cu
	1	2
1	Comma	and code hex
2	TEC ch	annel number

The field «PARAMETERS» of the information frame:

hh f2 e2 **f2**

1 2 3 4

1 TEC channel number whose parameters are given further

2 Resistance (R) (Ohm)

page 60 of 64

- Figure of merit Z (1000/K) 3
- Time constant tau (s) 4

1.10.16. Autotuning PID

	51	uc
	1	2
1	Comma	nd code hex
2	TEC cha	annel number

The field «PARAMETERS» of the information frame:

	"Tuning PID	uc	started. Wait!!! "
		1	
1	TEC channel nur	mber	

The autotuning function searches the values of proportional, integral and differential coefficients of the PID algorithm.

During the process, as the intermediate stages being over, the debugging information is outputted into a non-command interface.

After the end of autotuning the coefficients of a proper PID channel are set.

The coefficients are obtained for the cooling mode in which all the ADC channels are allowed to be measured - the longest sampling period of PID.

Attention! The procedure of adjustment may be long process and during it no commands are received and no information frames are formed. The LED indication stops (the beginning of LED indication can be a signal of the autotuning end). During autotuning of a channel, regulation of the other

ver. 3.13 (2017)

page 61 of 64

channel stops.

1.10.17. Reset of controller

53 1

1 Command code hex


1.10.18. Management of indication board

	54	[#screen]					
	1	2					
1	Comma	Command code hex					
2	Most significant nibble – unit temperature display 1 - degree Celsius, 0- Kelvin Least significant nibble - number Start screen 0- "E1" 3 - "E4"						

page 62 of 64

ver. 3.13 (2017)

page 63 of 64

46 Warshawskoe shosee Moscow 115230 Russia e-mail: info@promln.com phone: +7-499-678-3231 fax: +7-499-678-3258 website: www.promln.ru

page 64 of 64

Overseas Sales representative

TEC Microsystems GmbH

Schwarzschildstrasse 8 Berlin 12489, Germany phone: +49-(0)30-6789-3314 fax: +49-(0)30-6789-3315 e-mail: info@tec-microsystems.com website:www.tec-microsystems.de ver. 3.13 (2017)